

Using Surface-Based GPS Receivers to Validate AIRS Column-Integrated Water Vapor Retrievals

James G. Yoe

NOAA/NESDIS Office of Research & Applications 5200 Auth Road, Suite 810 E/RA1 Camp Springs, MD 20746

Seth I. Gutman

NOAA/OAR Forecast Systems Laboratory 325 Broadway R/FS3 Boulder, CO

http://gpsmet.fsl.noaa.gov

Overview

• GPS-IPW measurement principles

- GPS-IPW vs.other GPS meteorology
- Hardware and data collection
- Signal processing and IPW derivation

GPS-IPW data products

Examples and statistics

GPS-IPW for AIRS validation

- Strengths and limitations
- Schedule and collaboration
- Special needs

NOAR NOT TO AND ATMOSPHERIC TO MINE TRATION JOB COMMENT OF COMMENT

GPS Meteorology

- Gives total precipitable water vapor directly above site
- Expanding operational network implemented

• Gives line-of-sight signal delay to each

satellite in view

• Concept demonstrated. Techniques under investigation Space-Based Occultation

Measures signal delay from LEO satellites with near-global coverage

- Provides profiles of integrated refractive index (~ 1km x 300km)
- GPS/MET Demo 1995

SAC-C 2001

COSMIC 2005

GRAS 2005

GPSOS 2008

GPS Meteorology Overview

Typical GPS-IPW Demonstration Network Sites

NOAA Wind Profiler Sites Platteville, CO (PLTC)

Other NOAA Sites
Blacksburg, VA WFO (BLKV)

USCG and USDOT DGPS Sites Cape Canaveral, FL (CCV3)

GPS Signal Propagation Through The Atmosphere

- Propagation velocity of EMR in the ionosphere depends on frequency and the refractive index (n) associated with electron density.
- Ionospheric propagation effects can be eliminated using dual frequency receivers since:

• Below 30 GHz, EMR propagation velocity in the neutral atmosphere depends on the refractive index associated with temperature, pressure and water vapor.

Tropospheric Signal Delay

- After position is estimated, there are always residual errors caused by slowing and bending of the GPS signal in the neutral atmosphere the Tropospheric Signal Delay.
- In terms of the refractivity of the neutral atmosphere:

$$N = 10^{6} (n-1) = k_{1} \frac{P_{d}}{T} + k_{2} \frac{P_{v}}{T} + k_{3} \frac{P_{v}}{T^{2}}$$

where P_d and P_v are the partial pressures of the dry and wet components of the atmosphere; k₁k₂ and k₃ are the gas constants; and T is temperature.

• We apply a mapping function to estimate the signal delay that would be observed if each satellite was directly overhead, and average the results to give ZTD.

Long-Term Comparison of GPS and Rawinsondes 1996 1997 1998 1999 GPS IPW (cm) 2 Sonde - GPS IPW **Comparisons ARM SGP CART Site** Jan 1996 - Sep 1999 2 5 Sonde IPW (cm)

1996

N = 1382 Mean Dif. = 0.0346 cm Std. Dev. = 0.1977 cm Corr. = 0.9886

1997

N = 813 Mean Dif. = 0.0501 cm Std. Dev. = 0.1965 cm Corr. = 0.9874

1998

N = 771 Mean Dif. = -0.0431 cm Std. Dev. = 0.2308 cm Corr. = 0.9817

1999

N = 551 Mean Dif. = -0.0460 cm Std. Dev. = 0.2070 cm Corr. = 0.9851

1996 - 1999

N = 3600 Mean Dif. = 0.0080 cm Std. Dev. = 0.2102 cm Corr. = 0.9854

Equation of best fit line Y = 0.9876125443 * X + 0.01837114798

PWV Observing System Accuracy

1997 ARM WVIOP PWV Summary

Mean difference (w.r.t. Sondes) and standard deviation of PWV observations

GPS-IPW for AIRS Validation

Strengths

- All weather, high accuracy, 30 minute resolution,
- Operational

• Limitations

- Currently restricted to CONUS
- No vertical resolution; for profiles, serves as constraint

• Schedule

- Ready immediately
- Need to integrate w/ Wolf et al for "All-way" match-ups

• Special needs - None